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Abstract

Rotating beam structures can be found in engineering examples like turbine and helicopter blades. During their

operation, collision between a blade and a particle mass may occur unexpectedly. The impact caused by such collision

often results in significant structural damage. Therefore, the collision effect on the dynamic response of the structure

should be estimated accurately for a reliable design of the structure. In the present study, a linear hybrid deformation

modeling method along with the Kane’s method is employed to derive the equations of motion. The impulse created by the

collision between the rotating beam and the particle can be obtained by using the impulse and momentum principle, where

a coefficient of restitution is employed. Substituting the impulse into the equations of motion, the dynamic response of the

beam can be obtained. Effects of the particle mass size, the collision location, the coefficient of restitution, and the angular

motion of the beam on the dynamic response characteristics of rotating beams are investigated through numerical study.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Rotating cantilever beam-like structures can be found in practical engineering examples such as turbo
machine blades, aircraft blades and golf clubs. Rotating motion of a beam induces the variation of the system
bending stiffness that causes the variation of dynamic characteristics. However, particle collisions against
rotating structures may often occur during their operation (collisions between a bird and a rotating blade or
between a ball and a golf club head). These collisions usually result in excessive deflection and stress in the
collided structures, that affect the product life of the structures. Therefore, the dynamic characteristics of a
rotating structure which is collided by a particle mass should be carefully identified for a reliable design of the
structure.

Studies on the dynamic characteristics of flexible structures undergoing rotating motions were done by
many previous researchers. Southwell [1] and Schilhansl [2] provided early theoretical background on the
subject and many numerical works (see, for instance, Putter and Manor [3], Bhat [4] and Yoo, Ryan and Scott
[5]) have followed. In these papers, beam structures undergoing rotating motions were only studied without
considering the impact effect. In most of the papers in which the impact effect was considered, stationary
structures were only studied (see, for instance, Solberg and Papadopoulos [6] and Demkowicz and Bajer [7]).
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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The purpose of the present study is to propose a modeling method by which the transient responses and the
modal characteristics of rotating cantilever beam undertaking impact can be obtained. Using the modeling
method, the effects of the particle mass size, the location of collision, the coefficient of restitution and the
rotating speed on the transient responses and the modal characteristics of rotating cantilever beams will be
investigated and discussed through numerical studies.

This paper consists of four sections. Following this section, the equations of motion of a rotating cantilever
beam, which is collided with a particle are derived. Hybrid deformation variables and Kane’s method are
employed to derive the equations of motion. In the third section, numerical results obtained by employing the
equations of motion are exhibited and discussions related to the results are given. Especially, the effects of
particle mass size, angular speed of beam, impact location on the dynamic characteristics of the rotating beam
are investigated. Finally, conclusions are made in the final section.
2. Formulation for the modal analysis

Fig. 1 shows a cantilever beam which is characterized by natural length L. The beam is attached to a rigid
hub Â that undergoes rotational motion with a constant angular velocity o3. Collision between a rotating
beam and a particle mass may occur in the bending direction of the beam at an arbitrary time tI. The elastic
displacement of a generic point P of the beam can be expressed by using Cartesian deformation variables u1
and u2 that are orthogonal to each other. The mass per unit length, the Poisson’s ratio, the Young’s modulus,
the radius of hub, the area moment of the beam cross-section and the particle mass size are denoted by
symbols rb, n, E, r, I and m, respectively.

In the present work, equations of motion are derived by employing hybrid deformation variables instead
of Cartesian deformation variables. By employing the hybrid deformation variables one can capture
the motion induced stiffening effect with a linear modeling which cannot be captured only with the set of
classical Cartesian deformation variables. The hybrid deformation variable modeling method is well described
in Ref. [5].

In hybrid deformation variable modeling method, two deformation variables s and u2 can be approximated
employing the Rayleigh–Ritz method as follows:

s ¼
Xm1
i¼1

f1iðxÞq1iðtÞ, (1)

u2 ¼
Xm2
i¼1

f2iðxÞq2iðtÞ, (2)

where m1 and m2 are the numbers of generalized coordinates for the deformation variables s and u2,
respectively.
Fig. 1. Configuration of a rotating cantilever beam and a particle.
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The equations of motion can be derived by using Kane’s method. With the velocity ~vP and the acceleration
~aP of a generic point P, the generalized inertia forces F�i can be expressed as follows:

F�i ¼ �

Z L

0

rb

q~vP

q _q1i

� �
�~aP dx ði ¼ 1; 2; . . . ; m1Þ;

F�iþm1 ¼ �

Z L

0

rb

q~vP

q _q2i

� �
�~aP dx ði ¼ 1; 2; . . . ; m2Þ: ð3Þ

The generalized active forces Fi consist of Fi
U (which results from the strain energy of beam U) and Fi

I

(which results from the external impulsive force induced by the collision). In the equations of motion to be
derived, the impulsive force can be expressed with the impulse magnitude and a Dirac delta function
dðt� tI Þdðx� aÞ. Thus, the components of the generalized active forces can be expressed as follows:

FU
i ¼ �

qU

qq1i

¼ �

Z L

0

EAf1i;xf1j;x dx

� �
q1j ði ¼ 1; 2; � � � ;m1Þ

FU
iþm1
¼ �

qU

qq2i

¼ �

Z L

0

EIf2i;xxf2j;xx dx

� �
q2j ði ¼ 1; 2; � � � ; m2Þ ð4Þ

F I
i ¼ 0 ði ¼ 1; 2; . . . ;m1Þ

F I
iþm1
¼

Z L

0

qv̂P

q _q2i

� �
ð�Impdðt� tI Þdðx� aÞÞâ2 dx

¼ � Impdðt� tI Þf2iðaÞ ði ¼ 1; 2; . . . ;m2Þ; ð5Þ

Fi ¼ FU
i þ F I

i ði ¼ 1; 2; . . . ;m1 þ m2Þ, (6)

where a subscript following a comma indicates the partial differentiation with respect to the subscript. For
instance, fi,xx denotes the double differentiation of fi with respect to x.

Finally, the equations of motion can be derived by summing up the generalized inertia forces and the
generalized active forces

Fi þ F�i ¼ 0 ði ¼ 1; 2; . . . ;m1 þ m2Þ. (7)

Thus, the equations of motion in stretching and bending direction are derived as follows:

Xm1
j¼1

Z L

0

rbf1if1j dx

� �
€q1j

�
þ

Z L

0

EAf1i;xf1j;x dx

� �
� o2

3

Z L

0

rbf1if1j dx

� �� �
q1j

�

¼ ro2
3

Z L

0

rbf1i dx

� �
� o2

3

Z L

0

rbxf1i dx

� �
ði ¼ 1; 2; . . . ; m1Þ ð8Þ

Xm2
j¼1

Z L

0

rbf2if2j dx

� �
€q2j

�
þ

Z L

0

EIf2i;xxf2j;xx dx

� ��
� o2

3

Z L

0

rbf2if2j dx

� �

þ ro2
3

Z L

0

rb L� xð Þf2i;xf2j;x dx

� �
þo2

3

1

2

Z L

0

rb L2 � x2
� 	

f2i;xf2j;x dx

� ��
q2j

�

¼ �Impdðt� tI Þf2iðaÞ � r _o3

Z L

0

rbf2i dx

� �
� _o3

Z L

0

rbxf2i dx

� �
ði ¼ 1; 2; . . . ; m2Þ, ð9Þ

where o3 denotes the angular speed of the rigid hub.
To obtain the impulse, the following equation involved with the coefficient of restitution is employed:

e ¼
v̄m � v̄b að Þ

vb að Þ � vm

, (10)
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where subscripts b and m denote the beam and the particle, respectively. For instance, vb and vm denote the
velocities of the beam and the particle before collision and v̄b and v̄m denote the velocities of the beam and the
particle after collision. In this study, a simple method to estimate the structural response due to impact is
employed with a constant coefficient of restitution. Recently, more complicated models to estimate the
response of elastic bodies due to impact were introduced (see Refs. [8–10]). However, a simple model for the
impact is employed in this study since the main purpose of the present study is to estimate the structural
response of a rotating beam with an impact. So, the accuracy of the impact model itself is not the major
concern of the study.

As the collision is given in the bending direction, the equations of motion of the bending direction are to be
solved. The velocity of the particle before collision is zero. Since the collision only causes the instant change of
velocity, the initial conditions can be expressed as follows:

q2iðtI Þ ¼ q2iðtIþÞ. (11)

Now the velocity of beam in the bending direction before and after collision can be expressed as follows:

vbðxÞ ¼
Xm2
i¼1

f2iðxÞ _q2iðtI Þ þ o3ðrþ xÞ, (12)

v̄bðxÞ ¼
Xm2
i¼1

f2iðxÞ _q2iðtIþÞ þ o3ðrþ xÞ. (13)

To obtain _q2iðtIþÞ, the both sides of Eq. (9) are integrated from t ¼ tI to t ¼ tI+. Then, _q2iðtIþÞ can be
obtained as follows:

Xm2
j¼1

Z L

0

rbf2if2j dx

� �
½ _q2jðtIþÞ � _q2jðtI Þ� ¼ �Impf2iðaÞ ði ¼ 1; 2; . . . ;m2Þ. (14)

The impulse between the rotating beam and the particle can be obtained by using the impulse and
momentum principle as follows:

Imp ¼ mðv̄m � vmÞ. (15)

Now solving Eqs. (10), (14), and (15) simultaneously, the velocity of the particle mass after the collision can
be obtained as follows:

v̄m ¼
ðeþ 1Þ o3ðrþ aÞ þ

Pm2
i¼1f2iðaÞ _q2iðtI Þ


 �
1þ ðm=rbLÞ

Pm2
i¼1f2iðaÞf2iðaÞ

. (16)

Now substituting the impulse given in Eq. (15) into Eq. (14), one can obtain _q2iðtIþÞ. Using this initial
condition along with Eq. (11), the equations of motion can be solved to obtain the response of the beam after
the collision.
3. Numerical results

In this section, numerical results are obtained by using the equations of motion, which are derived in the
previous section. The employed mode functions are the eigenfunctions of the bending vibrations of the
stationary cantilever beam. Table 1 shows the properties of the beam.
Table 1

Properties of the beam

L (m) I (m4) rb (kg/m) E (N/m2) r (m)

5.0 1.333� 10�8 1.2 7� 1010 0.0
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Fig. 2. Variation of beam tip deflection induced by the impact with different angular velocity (e ¼ 1; a ¼ 5m; tI ¼ 1 s; m ¼ 0:1kg): ——

o3 ¼ 1 rad=s, ???? o3 ¼ 5 rad=s, – . – o3 ¼ 10 rad=s.

Fig. 3. Energy distribution versus frequency after the impact with different angular velocity (e ¼ 1; a ¼ 5m; tI ¼ 1 s; m ¼ 0:1kg): ——

o3 ¼ 1 rad=s, o3 ¼ 5 rad=s, o3 ¼ 10 rad=s.
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Fig. 2 shows the lateral deflection of the rotating beam undergoes constant angular velocity at the tip with
different values of angular velocity. Seven bending modes are employed to obtain the results. As shown in the
figure, the peak amplitude increases as the angular velocity increases. Such phenomenon results from the fact
that the impulse magnitude increases as the angular velocity increases. The magnitude of the lateral
displacement, however, becomes very large as the angular speed reaches 10 rad/s. So, the result might exceed
the valid limit of the linear model. It can also be observed from the figure that the modal characteristics vary as
the angular velocity varies. To clarify the fact, energy distribution versus frequency is calculated by using
discrete Fourier transform. As shown in Fig. 3, the natural frequencies increase as the angular velocity
increases. This is the well known phenomena which are often called as the stiffening effects. It can be also
shown clearly in the figure that the energy distribution increases as the angular velocity increases.



ARTICLE IN PRESS

Fig. 4. Variation of beam shape induced by the impact with different angular velocity (e ¼ 1; a ¼ 5m; tI ¼ 1 s; m ¼ 0:1 kg): (a)

t ¼ 1.001 s. (b) t ¼ 3 s. —— o3 ¼ 1 rad/s, ??? o3 ¼ 5 rad/s, – . – o3 ¼ 10 rad/s.
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Fig. 4 shows the shapes of beam after the impact with different values of angular velocity. Fig. 4(a) shows
the shape of the beam just after the impact. The highest frequency mode (7th bending mode) appears clearly in
the figure. This simply indicates that 7 bending modes are employed to obtain these numerical results. Fig. 4(b)
shows the shape of the beam at t ¼ 3 s. As shown in the figure, the lowest few modes dominate the dynamic
response of the beam after some lapse of time while the effects of higher frequency modes decrease fast.

Fig. 5 shows the lateral tip deflection of the rotating beam undergoes constant angular velocity with three
different impact locations. As the impact location approaches toward the fixed end of the cantilever beam, the
peak deflection at the tip decreases. This simply results from the fact that the magnitude of impulse decreases
as the impact location approaches toward the fixed end of the beam. Fig. 5 also shows that the impact location
does not affect the natural frequencies of the rotating beam. Fig. 6 shows the variation of energy magnitude to
be delivered at beam due to the impact versus impact locations. As the impact location moves toward the fixed
end of the beam, energy magnitude to be delivered at beam due to the impact decreases. The energy ratio
distribution versus frequency obtained by using discrete Fourier transform is shown in Fig. 7. As discussed
previously, the natural frequencies do not vary with the impact location change. However, as the impact
location moves toward the fixed end of the beam, the higher frequency energy portion increases while the
lower frequency energy portion decreases.

Fig. 8 shows the shape of beam after the impact with different impact locations. Fig. 8(a) shows the shape of
beam just after the impact. As shown in the figure, the deflection peaks are located at the locations of impact.
Fig. 8(b) shows the shape of beam at t ¼ 3 s. As shown in the figure, the shapes for the impact locations a ¼ 3
and 5m are dominated by a few lowest modes. However, in the shape for the impact location a ¼ 1m, the first
mode is not well observed. This indicates that the higher frequency modes contribute more as the impact
location approaches to the fixed end.
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Fig. 6. Energy magnitude to be delivered at beam due to the impact versus impact locations (e ¼ 1; tI ¼ 1 s; oS ¼ 5 rad=s; m ¼ 0:1 kg).

Fig. 5. Variation of beam tip deflection induced by the impact with three different impact locations

(e ¼ 1; tI ¼ 1 s; oS ¼ 5 rad=s; m ¼ 0:1kg): —— a ¼ 1m, ??? a ¼ 3m, – . – a ¼ 5m.

H.S. Lim et al. / Journal of Sound and Vibration 308 (2007) 794–804800
Fig. 9 shows the variation of the particle mass velocity after collision versus particle mass size at rotating
beam of the constant angular velocity. As shown in the figure, the velocity of the particle mass after collision
decreases as the particle mass size increases. As the ratio of the particle mass to the beam mass approaches to
zero, the velocity of the particle after impact approaches to a value. The value (when the particle mass size is
very small compared to the beam mass) can be obtained from Eq. (14) as follows:

m! 0) v̄m ¼ o3ðrþ aÞðeþ 1Þ,

m!1) v̄m ¼ 0. ð17Þ

For instance, if the coefficient of restitution between the beam and the particle is 1, the velocity of the
particle after impact is twice the velocity of the impact point of the beam just before the impact occurs.
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Fig. 7. Energy ratio distribution versus frequency after the impact and impact locations (e ¼ 1; tI ¼ 1 s;oS ¼ 5 rad=s; m ¼ 0:1 kg):
a ¼ 1m, a ¼ 3m, —— a ¼ 5m.

Fig. 8. Variation of beam shape induced by the impact with three different impact location (e ¼ 1; tI ¼ 1 s; oS ¼ 5 rad=s; m ¼ 0:1kg): (a)
t ¼ 1.001 s. (b) t ¼ 3 s. —— a ¼ 1m, ??? a ¼ 3m, – . – a ¼ 5m.
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Fig. 9. Variation of the particle mass velocity after collision versus particle mass size (e ¼ 1; a ¼ 5m; tI ¼ 1 s; oS ¼ 5 rad=s).

Fig. 10. Variation of maximum U-displacement in tip versus particle mass size with impact (e ¼ 1; a ¼ 5m; tI ¼ 1 s; oS ¼ 5 rad=s).

H.S. Lim et al. / Journal of Sound and Vibration 308 (2007) 794–804802
Fig. 10 shows the variation of the maximum tip deflection of the beam versus the particle mass size at
rotating beam of the constant angular velocity. As shown in the figure, maximum tip deflection increases as
the particle mass increases. However, the maximum value converges to a constant value as the particle mass
increases. The impulse which is related to the maximum displacement can be also obtained as follows:

m! 0) Imp ¼ 0,

m!1) Imp ¼
rbLo3ðrþ aÞðeþ 1Þ

Sf2iðaÞf2iðaÞ
ð18Þ

Fig. 11 shows the variation of maximum tip deflection and the particle mass velocity after collision versus
coefficient of restitution at rotating beam of the constant angular velocity. As shown in the figure, the particle
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Fig. 11. Variation of maximum deflection and the particle mass velocity after collision versus coefficient of restitution

(a ¼ 5m; oS ¼ 5 rad=s; m ¼ 0:1 kg): —— maximum U-displacement, ??? velocity of particle after collision.
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mass velocity after collision increase linearly as the coefficient of restitution increases. This can be easily
explained from Eq. (17). It can be also shown in the figure that maximum tip deflection increases as the
coefficient of restitution increases. This fact can be also explained from Eq. (18). As the magnitude of impact
increases, the deflection of the beam should be increased. Such beam deflection will often cause excessive stress
and eventual failure of the structure. Thus, such information is very important for the design of a rotating
structure, which is often collided by a particle mass.

4. Conclusion

In this paper, a modeling method for the dynamic analysis of a rotating beam collided by a particle mass is
presented. The numerical results show that the beam deflection after impact increases as the angular speed of
the beam increases. The well-known stiffening effect due to rotational motion is also observed from the results.
As the location of collision approaches toward the fixed end of cantilever beam, the lateral deflection
decreases. This results from the fact that the magnitude of impulse is influenced by the velocity of the impact
point of the beam. It is also shown that lower frequency energy portion decreases while higher frequency
portion increases as the location of collision approaches toward the fixed end of cantilever beam. As the rate
of the particle mass to the beam mass approaches to zero, the velocity of the particle after impact is 1+e times
the velocity of the impact point of the beam just before impact. As the particle mass increases, maximum tip
deflection approaches to a constant value.
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